
COLLEGE OF ENGINEERING

Web Security remains a major concern for developers and their users. This project 

focuses on a few of the most common web security issues. We demonstrate how they are 

exploited and how we can guard against them.

Vulnerable vs Secure
Using different versions of the same feature, 
we implemented vulnerable and secure code 
examples to use in our database. The above 
code shows our SQL injection vulnerability 
which allows users to bypass authentication 
due to non-parameterized SQL queries.

Users can choose to log in using either the 
secure or vulnerable methods to see how 
they work. Rather than creating two 
applications, one secure and one vulnerable, 
we decided to include a toggle to make 
usage more simple. Learning Outcomes

• We learned a lot about the importance of secure development 
practices and the negative impacts of ignoring them. 

• Implementing a secure website is almost as hard as intentionally 
making it insecure. 

• Vulnerabilities aren’t always easy to identify and patch, some may be 
hidden and eve go undetected for a long time until they lead to data 
breaches or worse.

• Vulnerabilities vary in degree of danger, some of the most dangerous 
ones can be guarded against by simply informing oneself and using 
good coding practices.

• There are many great resources for web developers to stay informed 
on the latest security vulnerabilities being exploited and how they can 
be guarded against. Our greatest resource: 
https://owasp.org/www-project-top-ten/

• For our project we used the OWASP Top 
Ten list to choose from some of today's 
most common web application security 
risks.

• Centered around a mock bank dashboard 
interface we set our to demonstrate how 
insecure web development practices can 
lead to serious security vulnerabilities in 
the real world.

• The application demonstrates exploits 
such as reflected XSS, SQL injection, 
insecure password cracking, and file 
upload vulnerabilities.

• Interactive demonstrations allow users to 
learn how thse exploits are utilized on 
insecure code and then how they can be 
be prevented with secure coding 
practices.

Web Security Research Project by Manuel Ramirez and Klaus Menendez
Project Background and 

Goals

Tech Used

● HTML and Bootstrap for our dashboard UI
● PHP and JavaScript for our backend logic
● SQL & and MariaDB for our password 

storage
● Apache2 server to host locally
● SQLmap to simulate sql injection on 

insecure login form
● HashCat to help crack insecure passwords

Detailed Explanations
Using different versions of the same feature, 
we implemented vulnerable and secure code 
examples to use in our database. The above 
code shows our SQL injection vulnerability 
which allows users to bypass authentication 
due to non-parameterized SQL queries.

Users can choose to log in using either the 
secure or vulnerable methods to see how 
they work. Rather than creating two 
applications, one secure and one vulnerable, 
we decided to include a toggle to make 
usage more simple.

Bcrypt Hashed Password 
Crack Attempt

MD5 Hashed Passwords - Exploiting multiple vulnerabilities, 
we were able to use SQL injection 
to steal our stored passwords and 
then use HashCat to crack the 
unsalted MD5 hashes almost 
instantly.

- Cracking Bcrypt hashes would 
have taken 21 days

 SQLmap Stealing Passwords


